PTI® FILE COPY | @

PROCEEDINGS FROM THE 1990 WORKSHOP ON

ISSUES OF INTEGRITY AND SECURITY

N~
'C\-l IN AN ADA RUNTIME ENVIRONMENT
0
N
N
T
Q
<L
April 3-5, 1990
Orlando, Florida
ELECTE
Sssp.oe wof)
B ,
since 1936
T OISTREUYION STRTEMENT A
.@ o (< , Wumm:
Dunthaton Usliemtted .

pons —:"A

b *

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (L eave blank). Block 12a. i

. Denotes public availability or limitations. Cite
i?tlc?:c';u? maﬁﬁ"y%‘é?"n“fféﬁgﬁf eo| & availability to the public. Enter additional
1 Jan 83). l\z.’ust cite at least the year. bl :?;mz?:&ra:‘pe;ieall_ "l‘%'g')'gs in all capitals

Block 3. Iﬁne_nl_Bamnand_Daxes_Qammd,
State whether report is interim, final, etc. If

i : DOD - See DoDD 5230.24, "Distribution
gmllac?t_ﬂgbmt:rs igflusuve report dates (e.g. 10 Statements on Tachnical

Documents.”

Block 4. Title and Subtitle. Atitle is taken from | DOE - See authorities.

: - HB 2200.2.
the part of the report that provides the most NASA - See Handbook N
meaningful and complete information. Whena | NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code,
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

B.ock 5. Eun.diﬂg_N.umne[s. TO indUde oontfact DOE h DOE - Entef DOE distribution categoﬂes

: from the Standard Distribution for
and grant numbers; may include program :
element number(s), pro}!ect number(s), task Unclassified Scientific and Technical

numbgr(s?. and work unit number(s). Use the NASA - nle\%oAn?'Leave blank.
foliowing labels: NTIS - NTIS - Leave biank.
g - gontract _l;: . _IFro’ect

- Grant - las . Block 13. Abstract, include a brief (Maximum
PE - FETgrgnrear?t‘ wU- xvérgsgi"‘;; No 200 words) factual summary of the most

) significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
respensible for writing the report, performin Biock 14. Sutject Terms, Keywords or phrases

the research, or credited with the content of the identifying major subjects in the report.
repont. If editor or compiler, this should follow

the name(s). Block 15. Number of Pages, Enter the total
Biock 7. 2 ; | oot number of pages.
Address(es). Self-explanatory.

P i4 Block 16. Price Code, Enter appropriate price
Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. icati
performing the report. Self-explanatory. Enter U.S. Security
Block 9. : : Classification in accordance with U.S. Security

contains classified information, stamp

Block 10. SggnsndngLMnmcmngAgenw classification on the top and bottom of the page.
Report Number. (If known)

Block 20. Limitation of Abstract. This block

Sponsoring/Monitoring Agency
Nms)_mmm SQ"-exp'anatory' Regu‘aﬁons (i.e-. UNCLASS'F'ED). If form

Block 11. Supplementary Notes, Enter must be completed to assign a limitation to the
Propaas I oo elsewhere Suchas: | abstract, Enter either UL (uniimited) or SAR
be published in.... When a report is revised, (same as report). An entry in this block is
include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

REPORT DOCUMENTATION PAGE O e, 07040188

Pubic burden for this colisction of information | estimated 1 1 howr o time for reviewing instructions, data sourose]
he deta and roviewing the colecion of iometion. bend & g ik Durdel eoirate o ey S s Coleci) o
£ S i budon. mmwuu:um%ummo %uam
1. AGENCY USE ONLY (Leave Biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1990 Proceedings April 3-5, 1990

t;roggggyngs from the 1990 Workhop on Issues of Integrity and 8. FUNDING NUMBERS

Security in an Ada Runtime Environment
6. AUTHOR(S)

IIT Research Institute
7. ‘ . PERFORMING ORGANIZA!

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 g Ayl TION
IITRI

4600 Forbes Blvd

Lanham, MD 20706
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

IITRI Ada Joint Program Office

4600 Forbes Blvd

Lanham, MD 20706 Rm 3E1l4

’ The Pentagon N/A
Washington, DC 20301-2080

11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/AVALLABILITY STATEMENT 12b. DISTRIBUTION CODE

Cleared for Puhlic Release, Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

This document provides a summary of the results of the 1990 Workshop on Issues of
Integrity and Security in an Ada Runtime Environment, which was held April 3-5, 1990 in
Orlando, Florida. This section provides a background on the workshop and an introduction
to each of the working groups. Appendix A is a compilation of the position papers that
the conference attendees submitted. Appendix B contains the preliminary review of the
currant Catalog of Implementation Features and Options (CIFO) from a security perspective
The CIFO review, which was held as an evening meeting, was attended by a few of the
workshop participants. Appendix C is a list of names and addresses of all the workshop
participants.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Security, Integrity, Ada RTE, Trusted Computer Base 88
18. PRICE CODE
By SO S RATON | 7o SRy SIS RATon 8- U CORRP AT | 5. TRATioN OF ReSTcT]
OF REPORT OF THIS PAGE 10 OF ABSTRACT 20. LMITATION OF
unclassified unclassified unclassified

NSN 7540-01-280-5500 W

2000V

PROCEEDINGS FROM THE 1990 WORKSHOP ON
ISSUES OF INTEGRITY AND SECURITY

IN AN ADA RUNTIME ENVIRONMENT

April 3-5, 1990

Orlando, Florida

Sponsored by

IIT Research Institute
and
Ada Joint Program Office

Program Committee Working Group Chairs
Mary Armstrong Dock Allen

George Buchanan John McHugh, Ph.D.
Steven Goldstein Charles McKay, Ph.D.

Fred Maymir-Ducharme, Ph.D. Richard Powers
Charles McKay, Ph.D.
Ken Rowe

TABLE OF CONTENTS

Acknowledgementsttt v
1.0 INTRODUCTIONttt iininnnnn 1-1
1.4 Background e e 1-1
1.2 Working Group Organization 1-1
20 ADARUNTIMEWORKINGGROUP 2-1
21 Issues Definition00t 2-1
22 Assumptions e e e e 2-6
23 ProCeSSttt e e e e e e 2-7
24 ldentificationof Threats 2-7
25 Working Modeland Interfaces 2-7
26 Exampleofan ARTE, 29
27 Analysis of ARTEFunctions 2-10
2.8 Allocation of Security Requirements to a Typical Ada Runtime .. 2-12
29 List of ARTE Features to SupportIntegrity 2-13
210 Recommendationsc.cuiiiiinnunnnnnn. 2-14
3.0 APPLICATION OF FORMAL METHODS TO SECURITY AND

4.0

INTEGRITY OF A TRUSTED ADA RUNTIME ENVIRONMENT ... 3-1

ISSUES OF ACCESS CONTROL IN A DISTRIBUTED

ENVIRONMENT WITH PERSISTENT DATA 4-1
APPENDICES
POSITION PAPERScci ittt A-1
CIFOSECURITYREVIEW B-1
WORKSHOP PARTICIPANTS ittt e e e en C-1
Accession Yor
NTIS GRARI
DTIC TAB a
Unannounced O
Justification |
By
i Distribution/

Availa§1;1ty Codes
Avail and/or
Diat Special

Yo

LIST OF FIGURES

2-1. Working Model Software Architecture
4-1. Overview of Working Group’s Position
4-2. Research and Developmentissues
43. Requirementsissuesc0iiiiinan.
44 Environmentallssuesc.c0 ...
45. TCBArchitecturecoiiiuiiiiniinnnnnnn.
4-6. Hardware and Software Considerations
47. OtherConsiderationscctiiiiinee..
48. DMLSIAccessControlscoiivinnn..
49. DMLSIEnvironmentsc¢ciiiiireeennnnn.

211 Interfface Summaryc. i e

ACKNOWLEDGEMENTS

The program committee would like to thank the following individuals for their
contributions to the workshop by serving as working group chairs and for their
contributions to these proceedings by preparing final reports for their working groups:

Dock Allen
John McHugh, Ph.D.
Charles McKay, Ph.D.

Richard Powers

The program committee would also like to thank all of the participants for their
contributions.

\

~

1.1 Background

1.0 INTRODUCTION

)This document provides a summary of the resuits of the 1990 Workshop on Issues of

Integrity and Security in an Ada Runtime Environment, which was held April 3-5, 1990
in Orlando, Florida. This section provides a background on the workshop and an
introduction to each of the working groups. Appendix A is a compilation of the position
papers that the conference attendees submitted. Appendix B contains the preliminary
review of the current Catalog of Implementation Features and Options (CIFO) from a
security perspective. The CIFO review, which was held as an evening meeting, was
attended by a few of the workshop participants. Appendix C is a list of names and
addresses of all the workshop participants. .

pay

~ The objectives of the-1980- Workshop on Issues of Integrity and Security in an Ada

Runtimew
,/_
. ‘) to identify and discuss the security and integrity issues related to the Ada
runtime environment; 7.)
. -~—/
PN

et S e

— e T

Ve
t :)\) to bring together and create some synergy among the security/integrity

and Ada specialists in order to adequately address security and integrity
issues related to the Ada runtime environment. .

< b JRER—

The workshop was jointly sponsored by IIT Research Institute and the Ada Joint
Program Office.
1.2 Working Group Organization

At the onset of the workshop participants were asked to participate in one of the
following working groups:

1. Ada Runtime Environment

2. Applications of Formal Methods to Security and Integrity of a Trusted Ada
Runtime Environment

3. Issues of Access Control in a Distributed Environment With Persistent Data.

The Ada Runtime Working Group, led by Ms. Dock Allen of Control Data Corporation
and Mr. Richard Powers of Texas Instruments Defense Systems and Electronics Group,

1-1

addressed the security and integrity issues directly related to the Ada runtime
environment and reviewed the most recent CIFO entries with respect to security and
integrity concerns.

The Applications of Formal Methods to Security and Integrity of a Trusted Ada Runtime
Environment working group, led by Dr. John McHugh of Computational Logic, Inc.,
discussed the applications of formal methods to security and integrity of trusted Ada
runtime environments.

The Issues of Access Control in a Distributed Environment With Persistent Data working
group, led by Dr. Charles McKay of the University of Houston at Clear Lake, addressed
the issues of access control in a distributed environment with persistent data.

The three working groups were each composed of approximately eight representatives
from Government, industry, and academia.

2.0 ADA RUNTIME WORKING GROUP

The Ada Runtime Working Group focused on the issues of security and integrity that
are a result of Ada runtime environments, as opposed to the general issues of security
and integrity that apply to all languages. The focus was primarily on the runtime itseff,
rather than the entire Ada language or pre-runtime tools.

The working group contained 10 participants, representing both the government and
industry. The participants were:

Dock Allen (Control Data),

Edward Beaver (Westinghouse ESG),

George Buchanan (lIT Research Institute),

Michael Diaz (Motorola GEG),

Clarence "Jay" Ferguson (National Security Agency),
Ed Gallagher (CECOM Center for Software Engineering),
Mark Kraieski (McAIR/LHX),

Nina Lewis (Unisys),

Fred Maymir-Ducharme (lIT Research Institute),
John Perkins (PRC),

Richard Powers (Texas Instruments),

Ken Rowe (NSA/NCSC).

The working group covered the following topics:

Issues and Assumptions

Definition of a Process for the Workshop

Identification of General Threat Types

Definition of a Working Model and its Interfaces

Analysis of the Security Issues for Typical Ada Runtime Features

Allocation of Security Requirements to a Typical Ada Runtime

Ada Features Required to Build integrity Into Applications Recommendations

2.1 Issues Definition

At the beginning of the workshop, the group identified a set of issues that were
significant with respect to integrity/security/Ada runtimes. Although there was not
sufficient time to address most of the issues, we present them as background. Having
identified the issues that the participants were concerned with, we focused the rest of
the workshop on the Ada Runtime issues.

How do security and integrity issues differ across the domain of systems?

2-1

The domain ranges from single/stand-alone type processor system to large,
distributed systems of main-frame class machines.

How are security and integrity requirements to be applied across this range?
Compiler trustedness: -

How can the trustedness of a compiler be established, so that the code
generated by the compiler can be trusted?

Controlling development of the Ada Runtime:

One major question was how "trusted" the Ada runtime had to be. This is
related, in part, to the security boundary issues, and whether or not the Ada
runtime is shared between subjects. Another major concern is using a
commercial Ada runtime. If the Ada runtime was developed outside of a
particular program’s control, how can its trustedness be established?

if there are packages or services that should be restricted, how does the
pre-runtime (compilation system and support tools) enforce these restrictions?

Many of the packages needed to build embedded systems can interfere with
system integrity if used unwisely; yet these are needed to deploy some real-time
systems. Compilation systems that support limited access to such packages are
clearly needed.

Protecting classified data from disclosure:
if data has been passed on the stack, or has been placed on the heap, the data
image can persist after the memory is released. Some form of scrubbing of
released stack and heap space may be required.

Protection of classified algorithms:

Protection from disclosure should include code, as algorithms can be classified.

Control over the placement of classified information:
To support secure operation, the placement of algorithms and data in memory

must be controlled. For code, and data defined at compile time, this is an issue
for the Compilation system and its tools. However, the runtime controls

2-2

placement of dynamically allocated data. This may conflict with security needs.

Elimination of unused code:

Code that is never executed must not be loaded for certain classes of systems.
This has implications for the runtime, as well as for the compilation; the runtime
features which are not used should be configured out.

Authentication of code:

Code should be authenticated when it is loaded; this is not typically an Ada
runtime responsibility. The code supplied by the Ada vendor may require
authentication, including the Ada runtime itself.

Security Boundaries:

A major issue discussed in the working group was where the boundaries
between subjects is in a secure system. Part of the group recommended that
the boundary be an Ada program, so that a secure multi-programming
environment could be buiit to enforce access controls.

Another part of the group felt that security must exist within an Ada program,
and that there were some applications, such as communication servers, where
the expressiveness of Ada tasking is required to produce a good application.
In this example, the security boundary should be at a lower level than the Ada
program, perhaps between tasks.
Yet a third party indicated that a hybrid approach was needed. Clearly, there
was no consensus on this issue. There was some agreement that the
muiti-programming approach would work; there was not consensus that it would
be sufficient.

if security boundaries are lower than the program level, what are they?

How does an Ada task relate to a process or subject?

What is the trusted computing base (TCB) with respect to the Ada Runtime?

How much of the TCB, if any, is in the Ada Runtime?

Does the Ada Runtime run "on top of' a TCB, or does some portion of the TCB
include some of the Ada Runtime functions. This is in part related to the

2-3

question of the security boundaries. In addition, the typical size of Ada Runtimes
would seem to preclude having the entire ARTE be a TCB.

What threats should the Ada Runtime be responsible for handling?
This relates, in part, to the issue of where the security boundaries are. It also
includes questions of how the Ada runtime can protect the system from

malicious and intentional compromise or corruption, and what vulnerabilities may
arise from the runtime itself.

When the environment includes an Ada runtime and an operating system, what
additional issues arise?

An Ada Runtime implemented "on top of" an operating system generally allocates
some of its functionality to the OS.

How does a TCB fit into this relationship?

Does Ada tasking present security/integrity issues?
The size of the Runtime to support Ada tasking is a concern, with respect to
code validation. Preservation of the * (star) property among tasks of different
levels may present problems.

What denial of service issues are of concern in Ada?

Most of the issues identified involved some form of resource gluttony or abuse:

A task/program can consume the heap, which will prevent other tasks/programs
from executing;

A task/program can consume the CPU;

A task/program can cause fragmentation of the heap;

A task/program can force excessive garbage collection by fragmenting the heap;
A task/program can consume channel/bus capacity;

An Ada runtime is allowed to keep a pointer for each terminated task (instead

of one common pointer), which can consume the heap for long-running
programs.

2-4

What should the runtime/TCB do in response to a security violation?
in an embedded system, terminating the program may not be an acceptable
response due to mission requirements, whereas this might be appropriate in a
mainframe environment.

How can Ada programs access low level hardware features without introducing
security/integrity problems?

Ada permits programs to access interrupts, when supported by the runtime, and
to access low level hardware interfaces. This allows applications to do functions
which are unique to a particular system, such as providing device drivers for
special-purpose devices.

Can the runtime mediate this access such that the application can provide these
low level service without compromising system security and integrity?

Is the Ada Runtime involved in encryption?

f encryption is an application, from the runtime perspective, how can that
application be trusted if the Ada runtime is not trusted?

How does reconfiguration of processor resources impact system integrity and security?

f an Ada program spans processing resources, what impact does
reconfiguration have on the integrity and security of the system?

The group noted that the Ada LRM says nothing about a partially functional Ada
program.

How do tailorable Ada runtimes affect system integrity and security?
The need to keep Ada runtimes small comes from several pressures. In addition
to saving memory, which is still a major concern in some systems, the smaller
Ada runtime is more amenable to verification.

How can the integrity and security of an Ada runtime be insured, in the face of
arbitrary subsets of functionality?

2-5

How can security requirements be verified in complex systems?

Given that it is not possible to perform formal proof on a reasonable Ada runtime
environment, what other techniques are available to validate that system security
requirements have been met?

What features are required in an Ada runtime such that a distributed security policy
can be implemented on top of it?

Distributed system services are often built upon, or integrated into, an Ada
runtime. [f these services have security requirements, what features does the
Ada runtime need to support?

This list just scratches the surface of the security and integrity issues. The working
group was not able to do more than list most of the issues. The remainder of the
workshop was spent on analysis of the runtime, and its impact on integrity and security.

2.2 Assumptions

1. The Ada compilation system(s) can limit programmer access to software
packages and interfaces. This assumption allowed the group to be less
concerned with interfaces that may be necessary to portions of the application
builders, but that introduce security/integrity risks.

2. Trusted interfaces will validate requests.

3. The underlying hardware has sufficient support to build a trusted system. This
assumption allowed the group to sidestep the issue of what hardware support
might be required. .

4, The group was not concerned with protecting erroneous "subjects" from
damaging themselves.

5. if multiple programs "with" a package, they get separate copies. This assumption
allowed certain assumptions to be made about a multi-programming approach
to supporting security and integrity.

6. The group was not concerned with programs which span processors.

2-6

2.3 Process

The working group used a process which involved adopting a working model for the
system, a typical Ada runtime architecture, and evaluating the security and integrity
issues within this frame work. Since it would not be possible to do a thorough analysis
of the domain, the group used the strategy of using representative sets of issues
applied to working models. The steps followed were:

1. Identify a set of representative system threats;

2. Adopt a working model for the architecture, Ada Runtime, and TCB;

3. Adopt a working model for an Ada Runtime;

4, Identify threats that originate in, or are exacerbated by, the ARTE;

5. Identify threats that are handled by the ARTE;

6. Determine the requirements that security and integrity would levy on the ARTE;

7. Prepare a set of recommendations for future research, analysis, and
prototyping.

2.4 |dentification of Threats

This activity identified a subset of system threats, in order to provide a focus for the
remaining analysis. The threat countermeasures identified were:

Protection of data and code from:

Disclosure of classified information;

Corruption;

Loss;

Intentional or inadvertent denial of service;

Sabotage or errors during development of the applications of the system
software, including the ARTE;

Presence of unauthorized code or data;

Protection of the execution environment, including the hardware state and the
- Ada runtime state;

) System level issues, such as encryption.

Or0N

No

®

2.5 Working Model and Interfaces

In order to explore the issues of Ada and security, the working group adopted a
working model for the TCB. This is not the only possible model, bu* serves as a
framework for discussion. In this model, it is assumed that the functions of the TCB
are provided by a combination of hardware, Ada Runtime Environment (ARTE), the
extended runtime library (XRTL), and the application.

2-7

—7

We assumed that the hardware provided sufficient support for secure a operation; this
usually means that AT LEAST a user/kernel separation is maintained, or that a capability
based architecture is used.

The ARTE provides the runtime services neeced by Ada, such as tasking and memory
management. The model assumes that much of the TCB is implemented within, or
underneath the ARTE. The mode! does not assume any particular relationship between
the ARTE and the TCB, except that they appear as a unit to the XRTL and application
software. If the system is built upon an existing operating system, this would also be
considered part of the ARTE, from the perspective of the modei.

The XRTL includes those functions typically thought of as system services, such as (/O
drivers. In some systems, support for distributed processing is an XRTL feature.
Many runtime extensions for real-time software, such as specialized memory managers,
can also be XRTL services.

The model allows for the case where some of the TCB functions are provided by XRTL
services, and even by the application itself. The model is illustrated in Figure 2.5-1.

Application
XRTL
ARTE
N TCB\ \ N TCB \\\>
DN NN
Logical TCB

Figure 2-1 Working Model Software Architecture.

in order to evaluate the Ada Runtime using this model, we developed a list of the
interfaces in the model, along with a definition of what each interface consisted of. The
interfaces are summarized in TABLE 2-1.

2-8

Application to XRTL

Application to ARTE

Application to Hardware

XRTL to ARTE

XRTL to Hardware

ARTE to Hardware

2.6 Example of an ARTE

" TABLE 2-1
INTERFACE SUMMARY

The XRTL consists of Ada packages which provide
system-level services for the application; the ARTEWG CIFO
defines several XRTL services. The XRTL interface is defined
by thepackages specifications for those services. The

- interface is explicit, consisting of Ada statements which

invoke the services.

The ARTE interface is implicit; the vendor defines the
interface, and the compiler generates calls to the runtime
in response to Ada statements in the source. The LRM, plus
any vendor supplied pragmas represent the interface to the
ARTE.

This interface is the Instruction Set Architecture (ISA) of the
system. The application access is via code emitted by the
compiler, and is often limited to those instructions and
addresses that are available in "user mode", in systems which
have a user/kernel separation in hardware.

This is the same as the Application to ARTE interface. Some
additional packages and pragmas may be provided to the
XRTL, on a limited basis, to provide access to lower level
runtime interfaces.

This is the same as the Application to Hardware interface,
except that portions of the XRTL may run in "kernel mode",
and have access to the complete ISA.

This is the same as the Application to hardware interface,
except that much of the ARTE will execute in "kernel mode".

The working group developed a list of functions typically supplied by an ARTE. This
list was then used to analyze parts of the ARTE (and functions of Ada) that might be
considered a risk to security and integrity.

Because the group had not defined where the security bounds should be drawn (i.e.

what is a subject?), the first pass through the list assumed that tasks within a single
program might be multiple subjects. This led to the numbered list that follows. The
second pass through the list assumed that multi-programming was used, and that
each Ada program was a subject. This removed several issues. The remaining issues
are indicated with an asterisk ("*") in the list. Finally, a pass was made through the
list to decide which of the remaining issues might be removed with an implementation
of multi-programming that better comprehends the security/indicated issues. The items
that remained after this process are indicated by a hash mark in front of the asterisk

(#*).

2.7 Analysis of ARTE Functions

Typical functions of the ARTE and possible security/integrity problems/issues:
ARTE 1 - Ada Exception Management

Functions: Raising exceptions and propagating them to applications.
Problems and Issues:

1. Raising an exception in a rendezvous can affect the execution of another task.
2. Anonymous and misleading exceptions can cause several problems.

ARTE 2 - Storage Management

Functions: Support for the allocation (‘new") and deallocation

(UNCHECKED_DEALLOCATION) of user data. Responsible for some portions of stack
management.

Problems and Issues:

*3. Heap Creep (fragmentation due to allocation/deallocation leading to denial of
service).

*4. Gluttony (allocating all available memory).

*5. Object reuse (i.e. support needed for scrubbing).

#*6. Loss of CPU time due to excessive garbage collection (due to fragmentation).

*7. Stack Scrubbing.

#*8. Register Scrubbing.

#*9. Address Space Management.

ARTE 3 - Task Management

Functions: Task creation, activation, termination, completion, abortion. Support for

210

various forms of rendezvous.

#*10. CPU Gluttony.

11. Abortion (of a visible task).

12. Abortion may not be immediate/timely.

13. Rendezvous. Many opportunities for problems exist when two tasks
communicate.

#*14. Task Gluttony (i.e. creating tasks until the system can no longer support and new
tasks).

#*15. Refusal to terminate/complete.

16. Priority inversion.

17. Priority inheritance during a rendezvous.

ARTE 4 - Time Management
Functions: Support for the delay statement. Support for package CALENDAR.
#*18. Delay implies a covert timing channel. |

#*19. Numerous short delays can tie up the ARTE handling delay completion, and
lead to a denial of service.

ARTE 5 - Input/Output
Functions: Support for predefined /O packages.

#*20. A file system implies many security/integrity vulnerabilities.
*21. Buffer reuse/scrubbing.

#*22. LOW_LEVEL_IO implies access to underlying hardware devices.
*23. Bulffer flushing.

#*24. Channel/device gluttony.

*25. Buffer giuttony.

26. Devicesffiles/buffers could be used as covert channels.

ARTE 6 - Initialization
Functions: Responsible for elaboration, elaboration checks, and system' initialization.
#*27. Hardware initialization.

#*28. Memory scrubbing.
29. Elaboration failures can affect all tasks in a program.

2-11

ARTE 7 - Shutdown
Eunctions: Concerned with program completion.

#*30. Scrubbing program resources upon exit.
#*31. The inability for a main procedure to abort itself (and all of its tasks.)

ARTE 8 - Compiler Support

Functions: Compiler dependent routines;

#*32. Must be evaluated on a compiler by compiler basis.

ARTE 9 - Interrupt Management

Functions: Responsible for handling machine interrupts/exceptions.

#*33. Interrupts being disabled/masked for too long can leave to denial of service.
#*34. Interrupts can be used as covert channels.

2.8 Allocation of Security Requirements to a Typical Ada Runtime

Based on the analysis conducted, the working group allocated the following security
requirements to the ARTE:

Detect, prevent, recover from, and report various forms of gluttony, including
CPU and memory.

Manage the address space protection features of the hardware;

implement scrubbing/object reuse for the heap, stack, registers, external storage
(where the ARTE provides the I/O services for that storage), and program
memory;

Provide trusted device services, including file management;

Monitor covert channels which are involve the runtime, such as covert timing
channels in the Ada delay;

Provide a means for an Ada main program to terminate itself or be aborted;

Detect, report, and recover from deadlock and starvation;

2-12

. Support a trusted audit log; this could be implemented by the ARTE; alternately,
it is implemented outside of the ARTE and used by the ARTE. This was felt
to be an implementation decision.

These do not represent a complete set, by any means, but serve as an example of
what would be required.
2.9 List of ARTE Features to Support Integrity

The group next discussed a list of ARTE features that could assist in building
high-integrity applications. The ARTE could export interfaces to all programs to:

1. Define a memory partition within a program.

2. Clear memory (heap, stack, and registers) at certain times. This would allow
the program to control when scrubbing occurred.

3. Initialize memory.

4, “Freeze" memory (i.e. make it read-only) at some point during execution. This
would allow the program to calculate values, then insure then they were not
accidentally changed.

5. Report stack history (trace back) at runtime.

6. Log exceptions.

7. Detect a read of an undefined object.

8. Terminate/abort the main program. Currently, the main may unable to terminate
because other tasks are still running.

9. Limit the view of the standard I/O packages. Currently, a user gets all of the I/O

package, such as text_io, when the package is with'd. For integrity reasons, it
would be desirable to limit the capabilities which a particular user obtained.

Several issues were also discussed that were determined to be more of a toolset issue
than an ARTE issue. The toolset could aid the appilication builder by:

1. Allowing total control over elaboration order.
2. Allowing total control over parameter passing mechanism. This eliminates an
area of unpredictability in the program behavior when non-scaler objects are
_ used as parameters.
3. Allowing control over order of evaluation of expressions.
4. Limiting the use of language features for parts of a program.

2-13

2.10 Recommendations

1.

,>ON

10.

11.
12.

Evaluate the feasibility of using host tools to check programs for secure and
high integrity use of Ada.

Evaluate the ARTEWG CIFO from a security and untegnty perspective.

Propose and evaluate aiternate TCB software architectures.

Propose and evaluate alternate approaches to subject boundaries (e.g. programs
versus lower than programs, functional versus lexical).

Evaluate where current compilers do not efficiently support Ada features which
are valuable for security and integrity.

Identify hardware support needed for or beneficial to proposed secure software
architectures.

Develop guidelines for use of Ada in secure/high integrity systems.

Examine and recommend approaches for tools to control use of Ada/XRTL
features.

Continue to evaluate/identify/elaborate security-related ARTE and Ada issues and
solve the problems.

The group strongly supports any Ada 9X effort to provide more prednctabahty
and formalism for Ada in the interest of security.

Foster research addressing formal verification of concurrent Ada.

Develop guidelines for CIFO use on secure/high interest systems.

2-14

3.0 APPLICATION OF FORMAL METHODS TO SECURITY AND INTEGRITY OF
A TRUSTED ADA RUNTIME ENVIRONMENT

Being formalists, even if only temporarily, or by osmosis, we feel a need to question
some basic premises. It is unclear to us that there are specifically identifiable Security
and Integrity issues associated with run time environments for Ada, per se. We see a
variety of issues associated with Ada code that becomes part of the TCB, whether this
code represents a trusted application, a RTS, or an operating system kernel. We feel
that the development of lengthy lists of very specific issues indicates a failure to
comprehend the overall problem. Accordingly, the Formal Methods group has
concentrated on process.

We believe that our results establish a framework that can be used to place the detailed
issue lists of the other working groups in an appropriate context. Before presenting
framework, we will discuss a few general issues. The report continues with an outline
of the research issues that provide the bulk of the section. The research issues
constitute framework mentioned above. These are followed by a couple of issues that
are seen as technology transfer rather than research. The section concludes with a
roadmap that outlines a research agenda and a position statement on the way in which
the agenda should be executed.

General Issues:

First, we would like to acknowledge the participation of the members of the working
group (listed below). Without their efforts, this work could not have been developed.
As group leader, | (John McHugh) accept responsibility for any sins of omission or
commission.

John McHugh, (Computational Logic, Inc.) *Group leader
James Alstad, (Hughes Aircraft Company)

Paul Cohen, (Martin Marietta)

Steven Goldstein, (lIT Research Institute)

Ann Marmor-Squrires, (TRW)

John Perking, (DRC)

John Shultis, (Incremental Systems Corporation)

We are less than comfortable with the conceptual basis of the

workshop. Our collective experience leads some of us to feel that, while we understand
the TCSEC reasonably well, we are not completely comfortable with it as a basis for
a formalization of security in a real sense. With an increasing tendency towards the
formulation of mission-specific security policies and the notion of trusted applications,

3-1

we feel that a more flexible and general framework is appropriate as a formal basis.
Because much of the discussion of the workshop comes into the category of trusted
applications, we feel that it is appropriate to raise this question here. We are even less
comfortable with the definition of integrity. We adopted both a majority and minority
definition.

Integrity is the assurance that the response of a system to a stimulus is in
conformity with the system specification.

This is so comprehensive as to be equivalent to functional
correctness. The minority definition is an attempt to restrict the scope to computer and
software issues.

Integrity is the agreement of system outputs with the specification.

A third definition was suggested by Steve Goldstein. This couches integrity in terms
of data corruption with the notion that

unauthorized modification reduces the integrity of the data. All of these are distinct
from hierarchical notions of Biba and others.

To me, none of these are particularly satisfying. Integrity is not a binary quantity, but
we seem to lack a metric for quantifying

integrity. There is no basis for the establishing the integrity of externally developed data
or for specifying the effects of software on the reiationship between the integrity of input
and output data. There is no basis far establishing the integrity metrics for software.

In the discussion that follows, the following definition is used to define formalism.

Formalism is an unambiguous expression of the paradigm and vocabulary that
define a semantic model.

The following provides a list of research issues and a basis for categorizing issues:
The following are research issues.

l What methodologies are suitable for using formal methods in the development
and maintenance of trusted Ada runtime systems?

A. What are the concepts that need to be axiomatized?
Partial answer - rts sensitized
multi-processing
real-time
Inter-program communication
(this list needs S & | concepts added)

3-2

B. What is a good formal language for expressing security and integrity
properties?

Position: The language must cover, at least,
execution environment and Ada dynamic semantics.

1. Is a logic more expressive than first order logic
desirable?

2. How can inherent and/or deliberate ambiguities and
consistencies in Ada be expressed in the furmal
language?

C. What are the appropriate paradigm and vocabulary?
Ontology?
1. Do we need an execution model as well as an Ada
level model?
Position: Yes
a. What is. an appropriate vocabulary for
specifying an execution environment?
b. What is an appropriate vocabulary for
specifying an Ada dynamic semantics?
Position: If these vocabularies are
different, there will be consequences to
investigate. The investigation will need
to consider both domains.
D. What are appropriate Formal Methods for Security and
Integrity in Ada.

E. What is a formal language that flows down well into
system/software implementation languages such as Ada.
F. What tools are required to support the above methods and

methodologies.

. Are there RTS-specific issues?
Position: We feel that TCB specific issues exist that affect the RTS or even
applications if they are part of the TCB. There are no RTS issues, per se.

. What is the relationship between Application Security and Integrity and the
RTS? ‘
Position: This question is addressed with the "Onion Skin" diagram with
appropriate overlays.

V. Is there an incremental approach to the development of formalisms, methods,
and tools?
Position: Yes

3-3

A.What useful short term research results can be obtained through incomplete
and/or approximate formalisms?
Position: E.g, How we deal with ambiguous and incomplete run time models?

The following are technology transfer issues.
V. How should Farmal Methods be ir{troduced into practice.

VI. What we can say today about dealing with the informality of existing languages,
systems, and specifications?
Position: Use safe subsets. Work has been done on this by TRW (ASOS), ORA
(Penelope), CLI (AVA), NPL (Low Ada).

A ROADMAP FOR RESEARCH

| / N\ v
4 JIN

B IC ID LE IF

POSITION

Incorporation of formal methods in software engineering practice requires a cooperative
effort involving practitioners in the design and engineering of formal methodology and
greater understanding and appreciation of software practice on the part of formal
methods researchers.

We, therefore recommend a multi-threaded approach involving teams of researchers
and practitioners, preferably situated in the application development environment, to
negotiate approximate solutions of real utility and strategies for extending them to
progressively more complete solutions.

4.0 ISSUES OF ACCESS CONTROL IN A DISTRIBUTED ENVIRONMENT WITH
PERSISTENT DATA

The following individuals were members of the Issues of Access Control in a Distributed
Environment With Persistent Data working group:

Charles McKay * chair
William R. Worger (US Army)

Sue Le Grand (Planning Research Corporation)
Jeffrey L. Grover (Georgia Tech Research Institute)
Capt. Robert Pierce (US Air Force)

Ann Maymor-Squires (TRW)

The final report of this working group was divided into three parts: the context of this
workshop and working group, the major issues addressed by this working group, and
their recommendations.

The context of this workshop and working group is introduced in Figure 4-1. As-
shown, the external oversights and other stimuli that synergistically affect national issues
of policy, standards, and research and development will impact the system security
policy for any project. (A project is indicated by the rectangle in the middle of the
figure.) Just as the perspectives of both users and acquisition personnel are influenced
throughout the project life cycle by the system security policy adopted for the project,
these perspectives also reflect the influences of the vendors and supply communities
(shown at the bottom of the figure) that provide a portion of the stimuli (shown at the
top of the figure). Specifically, the compilers, runtime environments, and other tools and
components provided by these vendors and supply communities will directly and
indirectly influence the expected capabilities and delivered items throughout the project’s
life cycle.

4-1

EXTERNAL OVERSIGHT/STIMULI
|

| |

NATIONAL/STDS /R&D

L

AN .
SRR

REQ— SPEG— IMP—T&E— 0&M

M

EXPECTED
CAPABILITIES ITEMS
COMPILERS /RTE /MODULES...

|
VENDORS/SUPPLY COMMUNITIES

Figure 4-1. Overview of Working Group’s Position.

The context of this workshop reflects issues at the top of Figure 4-2. In particular, the
workshop focused on the research and development issues that might facilitate real
progress in future projects of national importance. This working group focused on the
capabilities needed from the vendor and supply community that are unlikely to be
available in a timely fashion unless these research and development issues are properly
addressed.

4-2

EXTERNAL OVERSIGHT/STIMULI
|

l KEN __ 2 |

G e o
e —

SYSTEM SEC. POLIC
ISSUES

T 2

FORMAL COMPILERS/RTE/MODULES...

| J

I
VENDORS /SUPPLY COMMUNITIES

Figure 4-2. Research and Development Issues.

The issues of access control in distributed environments were considered across a
number of dimensions. As shown in Figure 4-3, the functional requirements of a project
must be balanced against the constraints imposed on the solution (i.e., nonfunctional
requirements). In turn, these issues must be balanced between the application software
(responsible for the management of its own, unique services and resources) and the
underlying system software (responsible for managing all services and resources shared
across multiple applications and users).

4-3

FUNC REQ NON FUNC REQ

Ap Sw (Mng's Unique Serv.
& Resources)

Sys Sw(Mng's Shareable
Serv. & Resources)

Figure 4-3. Requirements Issues.

Figure 4-4 reflects the mapping of the Figure 4-3 concerns across a succession of
target, integration, and host environments—each of which can be distributed. The
semantics of access control in distributed target environments (where applications are
deployed and operated) must be much richer than those of the current runtime
environments if future projects are to satisfy their increasingly distributed and critical
missions. In turn, this semantically rich, runtime environment of the target system will
require enhanced support from the integration environment where final verification and
validation of the target software is performed and the management of monitoring,
advancing, and regressing the target environment baselines is performed. The
combination of requirements for enriched runtime semantics among the target and
integration environments impacts the requirements on the host environment where
application solutions are proposed, developed, and sustained. Specifically, the ability
to support dynamic, multievel security and integrity in an incrementally evolving,
distributed target environment requires access control semantics that are not found in
today’s systems and that must be developed and sustained in host environments and
preserved across the integration environment.

HOST vV + + TARGET
ENVIR. v o + &+ ENVIR.
INTEG

v
v ENVIR. + *
ISSUES
Tech <« » Mgt
SPECTRUM '

Figure 4-4. Environmental Issues.

The two parts of Figure 4-5 introduce the issues of a trusted computer base (TCB)
which extends across portions of the hardware, the Ada runtime environment (as
prescribed by the language standard), the extended runtime library (legal extensions
such as those proposed in the ARTEWG CIFO*), and parts of the application. The
right side of the figure extends these concepts to explicitly - identify collections of
processors, their individual kernels, and the supported applications. The TCB for such
distributed systems would include the firewalled portions of the applications, supporting
portions of the distributed kerel, and those individual processors and their kerneis that
are needed to support the dynamic, muitievel security and integrity (DMLSI)
requirements of the applications.

*ARTEWG CIFO: Ada Run Time Environment Working Group - Catalog of Interface
Features and Options.

4-5

TCB

APPLICATION

xlg'fh- DIST K
-~,‘\\ARTE.\\ K Kl K K K
HARDWARE ™. PIFIRL PP

Figure 4-5. TCB Architecture.

The working group also considered the multidimensional issues involved in mapping the
concerns depicted in Figures 4-1 through 4-4 to considerations of hardware, software,
criticality and sensitivity, and time afd space (see Figures 4-6 and 4-7). In particular,
hardware considerations extend through the concerns of processors, buses, and the
shared memory and devices of multiprocessor clusters to their interactions with other
clusters via local area and wide area networks. The software considerations begin with
the requirements for single processor kernels and extend through the multiprocessor
and distributed kernels to distributed operating system libraries, configuration control,
shared communications services and resources, shared information services and
resources, and the distributed applications themselves. The concerns for criticality and
sensitivity as well as temporal and spatial issues result in configurations which possess
varying degrees of confidence and trust. In particular, the configurations refiect
judgments of the system's logical components, physical components, and their
mappings. Unfortunately, the research and development advancements which are
sorely needed to resolve these issues cannot be reasonably expected to emerge from
any one or two of the affected constituencies in govermment, industry, and academia.
instead, only a joint commitment is likely to have a chance to succeed in the face of
80 much complexity.

HARDWARE CONSIDERATIONS

WAN

LAN

MULTI! PROC CLUSTERS
PROCESSORS

BUSES

SHARED MEMORY & DEVICES

MAPPING CONSIDERATIONS
SOFTWARE CONSIDERATIONS

DIST AP SOFTWARE
DIST INFO SERV & RES -
DIST COMM SERV & RES
DIST CONFIG CONTROL
DIST RUNTIME/OS
LIBRARIES

KERNEL, MULT PROC
KERNEL, SINGLE PROC

FUNCTIONAL REQUIREMENTS & NON-FUNCTIONAL REQUIREMENTS

CRITICALITY & SENSITIVITY
TIME & SPACE

Figure 4-6. Hardware and Software Considerations.

CONFIDENCE & TRUST = F (ABOVE CFG'S

ABOVE CFG'S = F (LOGICAL COMPONENT AND PHYSICAL COMPONENTS

AUDIENCE & PURPOSE

AND THEIR MAPPINGS)

GOVERNMENT INDUSTRY ACADEMIA
COoTs CUSTOM DEV RESEARCH
STANDARDS POLICIES

Figure 4-7. Other Considerations.

4-7

Figure 4-8 maps the preceding issues to the heart of the problem of DMLSI access
controls in large, complex, distributed systems. Subject objects are processes
representing application users in requesting the underiying system to provide the
requested access to the designated target objects. The capabilities of these subject
objscts is intended to be a function of both the roles that may be assumed by the user
and the views of the target objects that are permitted to the user in these roles. Often,
the n.anagement of this subject object domain is separately vested from the
management of the target object domain and the underlying distributed system of
shared services and resources. Thus, the subject object with a given set of roles and
views may prepare a requesting message for the destination site containing the target
‘object. Assuming that the current context of the underlying system permits (e.g., no
emergencies or overloads exist when the request is submitted by the subject object),
the delivered message is checked in the target environment against the required access
rights of the target object. If the capabilities of the subject match the required access
rights of the target and the underlying system is prepared and able to support the
requested access, then the request is honored.

SUBJECT MSG: SO TO TO, CONTEXT,

OBJECT REQ SERVICE & RESOURCES, | opooet
- VIEWS CONSTRAINTS, CAPABILITIES | , oo

. \s B SS
o RIGHTS

DIST.SYSTEM

ACCESS CONTROL

Figure 4-8. DMLSI Access Controls.

Figure 4-9 illustrates the mapping of the preceding cuncerns to the intended DMLSI
environment. For example, distributed application 'A’, part 1 of 3, might be the subject
requesting access to a target object resource managed by the second of the three
parts of this distributed application. When the subject object prepares and submits the
requesting message to the underlying distributed kernel (i.e., the system software), it

4-8

can be carefully monitored by background software that leverages the known semantics
of the states and sequences of state transformations that are legal for the distributed
application. Assuming no fault instance from a predetermined fault class was detected
by this monitor, the message may be forwarded to the site of the intended target
object. Here, the access rights required for the local target object are compared to the
request prepared by the remote subject and the system software prepared meta
information on the capabilities of the roles and views of the subject. A satisfactory
match of subject capabilities, system context of operation (e.g., normal vs emergency),
and target access rights may result in the satisfaction of the authorized-and-possible
request.

SCENARIO
DAp ‘A’ . DAp ‘B’ DAp ‘A’ 3:%
Monitor . P DAp 'B
Pt 1 of 3 Pt 4 of 5 | Mon Pt 2 of 3| MOD | B9 of 10
® 06 o
| DIST. KERNEL
K K K K K K
P1 {leiu- PNF———— PO | PP| P
HW — :}’. — HW

Figure 4-9. DMLSI Environments.

The following reconimendations were developed by the working: group in response to
the preceding context and issues.

1.Evolve a national, Conceptual Reference Model (CRM) for runtime environments
to support mission and safety critical applications in distributed environments.

4-9

The CRM shduld respohd to at least the issues addressed in the preceding figures.

2.As the highest national priority for the use of the CRM, specify and develop the
interface set of the distributed kernel.

The CRM interface set should support a ’single site image’.

Government contracts should follow for the development of proof-of-concept
implementations, validation test suites, etc through formal models and methods
for the distributed kernel and distributed applications.

3.Similar government contracts should follow for CIFO’s (See the ARTEWG
footnote.) of the: distributed information services, distributed communication
services, distributed configuration control services, and distributed operating
system services.

4-10

APPENDIX A

POSITION PAPERS

A-1

This appendix contains position papers from those wdrkshop participants who agreed
to have their position papers published in these proceedings.

A-2

Architectures for Secure Ada Runtime Support

Linda J. Harrison
Ning Lewts
Unisys Corporation
5151 Camino Ruiz
Camarillo. CA ¢3010

January 24, 1990

ABSTRACT

This paper addresses security issues related 10 Ada rundme suppart. Specifically,
we examine architectural approaches to providing usted runume support, and the result-
ing requirements piaced on the development environment. Two altemative approaches
for runtime support are presented and examined: private Ada Runtime Sysiems, one for
each applicaton, and Shared Ada X:nome Systems, wihich are shared by several or all
applications. Key securiry requirements, such as protecton of the runtime library in the
development environment and design or a1 security arcihutecmure in the operational
environment, are cxamined. 3oth the Pnvate and Shared a~proach alternauves seem
feasible, but one may be preferred for a specitic operational sysiem.

1. Introduction

This paper reports on our investragon of security issues reiated w0 Ada runome support. spanning
both development and operanonal environments. Figure 1 shows how the Ada Runume Library in the
deveiopment environment is ranstormed into the Rundme System in the operational environment, an¢’ iow
the source program is ransformed into a compiler-senerated applicadon program. Whether the operatonal
system is abie to protest its assets depends in part on the choics of protection mechanisms, but also on the
correct impiementation of those mechanisms. An appropriateiy chosen security policy for the development
environment will increase assurance that the operadonal system mechanisms are impicmented correciy.
Thus, a ey security issue in the development environment is protecton of the Ada Runume Library, so we
examine the need 0 establish and mainein the integrity! of the Ada Runtime Library. A key security issue
in the operadonal environment is designing the architeciure of the virtual machine presented 10 the applica-
ton.

The paper is organized in four sections. Since the security requirements of the operational environ-
ment should drive the security requirements of the development environment, we first present operational
requirements in Section Two by examining how the Ada Runtime System can be accommodated within a
trusted system that must provide recurity prowction. Secton Tnree then looks at requirements placed on
the development environment by the operational requirements to support the developmeat of Ada programs
requiring runtime support. Conclusions are presented in Section Four.

1 demethMdhm-mmWMMd;wmn~
cess without regard 1o an object’s content, and functional integrisy refers o the ability of & procsss to behave as expectad.

Figure 1 - Ada Runtime Sapport

2. The Operational Eavironment

This secdon describes various design alternatives for providing Ada runtime support. This runtme
support may come from the underiying operating sysiem, the Ada Runtime System, or a combination of the
above. Using only underlying operafing system support impiies that certain Ada featres (e.g. tasiing) will
not be used. Using only Ada Rundme System support implies that all capabilities not suppiied by the
hardware, but required to support Ada programs, will be provided by the Ada Runtime System. The com-
binadon approach implies that the Ada Rundme System will use services of an underlying operatng sys-
tem © provide services 1o Ada application programs. The application programs may also, if desired,
directly use the sexrvices of the underlying operating system. This paper assumes that a combination
approach »+11 be used and that the underlying operating system is trusted.

2.1. Architecture of a Trusted System

Figure 2 illustrates a general architecture for trusted systems. At the lowest layer, 2 primitive kernel
provides an interface w0 the hardware. Hardware memory management and interrupt procsssing are pan of
this layer. It is not until the extended kernel that familiar operating system absractions appear. This layer
implements the process abstraction and possibly file system absractions. The security kernel impiements
the reference moniwr concept, using the process abstractions of the extended kemel In addidon wo the
security kemnel, there are wusted processes. The security policy allows zusted processes to violate the
security policy of the security kemel, but only in a precisely controlled manner.2 The procsss scheduler is a
classic exampie of 3 trusted process. All of these items collectively make up an operating system TCB.

2 While it is often stated that rastad processes are allowed to violss the security policy. formally the Bell snd LaPaduls
secarity policy model handles this difficulty by coasidering trusted processes o bs maitilevel and permits s rusied process
10 wrils 10 any object within its raags.

H
i
i
He

 Secarmy wsand | trosext | costed | tresasd
Oversang
Sysaam
™ Exmased Xernei
Pramxive Karnal
— TR

Figure 2 - Trusted System Architecture

Above the operating system TC3. all accesses o objects by subjects are mediated by the security
kernel Subjects are active entitier that are implemented using the process abswracuons of the extended ker-
nel. Unlike ousted procssses. they are labeled. Thers are two classes of subjects, musted and untrusted.
Trusted subjects also enforcs a security policyS, but their security policy cannot invalidate or nterfere with
the security policy of the opexaring system TC3B (e.g. security kemnel and musted processes). Exampies of
tusted subjects are database management sysiems, mail handling systems, and simulators. Trusted sub-
jects are very similar w0 gusted procssses: the distnguishing facwor is that the use of Tusted subiects is
mediated by the security kernel, The operating system TC3 and all gusted subjects make yp aa extended
TC3.

According to the Trusted Computer Security Evaluation Criteria (TCSEC), the TCB is the touality of
protection mechanisms that enforce a security policy, and trusted software is the software portion of the
TCB. Yeu, it is not clear if the protection mechanisms for integrity and service assurance policies can be
implemented within a TCB framework. That is, the protection mechanisms for integrity and service
assurance may be distributed throughout the system, making it impossible w disginguish TC3 and non-TC3
elements. In this paper, we consider zusted software w0 be the software portion of a TC3, but recognize
that there may be other software that is security relevamt but is not parnt of a TCB.

22. Private Runtime Systems

One proposal regarding Ada runtime support in a trusted environment is a structured approach with
four components: untrusted applications, untrusted runtime systems, the trusted security kernel. and the
gusted security kemnel runtime system. Each application and the kemel maintain private runtime systems.
The security kernel's runtime system is architecmuraily part of the security kemel and thus within the
operating system TCB. The application runtime systems are architecnurally pant of the applications. They
cannot subvert the protection measures of the kernel and thus need not be zusted. This proposal is some-
what simplified. [t does not consider the architecmre of a tusted system as presented in Figure 2. The
operating system acmually consists of a layered kemnel and wrusted processes. There may be a runtime sys-
tem associated with all of these endries, as well as a rundme system associated with each of the system's
applications. Further, some of the applications may need w be usted (e.g. trusted subjects).

3 Ancuher wrm for rusted subject is trusted application.

While u is hard 0 predic: whether some applicarions can be developed without using Ada feanwres
that require runume support. there is evidence that a usted operaung system can be developed in Ada
without using runume support, namely the Army Secure Operaung Sysiem (ASOS). Therefore, in the
remainder of this paper. we assume that the qusted operanng system components require no runume sup-
port, and conceagate on how {0 provide runame support (o application programs.

In Figure 3, an architecaure is provosed that shows privaie Ada Runtime Svswems for each applica-
ton. The runume systems of ousted subjects must be usted: their design and developmemt must be sub-
jected to TCSEC requirements. If this were not the case, malicious code could subvert the security policy
of the qusted subject. The runtime systems of untrusted subjects are not Tusted, because they necessarily
cannot subvest the protection measures of the extended TCB. Security relevant feamres of the Aaaz Ruan-
ume System are orly security relevant if the runtime sysiem is required to handle multiple leveis of dat.
The pnivaie runume systems of untrusted applications will not handle muitipie levels of data.

A shordall of this proposal is that it assumes that the security policy is enforceable by a cenmalized
TC3. While a confidentiality policy can be enforced in this manner. i is not clear that integrity and service
assurance requirsments can be enforced within » small cengalized TCS. Tuus. there may be integnty and
service assurance requirements placed upon applications that are uot part of a TCB. For cxampic. 1 may
not be desirable w introduce unknown or unscrugnized code into any appiicauon with wecTity or
assurancs of service reyuwrements. This implies that Ada Runtme Library routines supplied by vendors in
executabic form may not be inroduced into the Ada Runtime System for wusted applications. We retum o
the issue of functional integrity of Ada Runume Library routines during our discussion of the deveioment
environment.

Building a secure application requires considesable sffort during al! phases of the software lifccvele.
With this approach eact: application is considered separatety, and the procsss of evaluaung the applicaucn
and the applicagon runtime system is performed individually for eac:. appiicadon. Using runume suppor:
wiil make the application larger and thus more difficult 10 cvaluate. This could resuit in a tendency not 0
use Ada teavires, such as tasking, using instead system icvel routnes. The result - less portable applics-
dons.

=J. Shared Runtime Systems

A logical alternative to private runtime sysiems are runtime systems that . shared bv severai or all
applications. We first considered proposing an Ada Runtme System as a usted process in tne operaung
system TC3, but the TCSEC is very specific about what can and cannot be part of the operaang svstem
TC3. Beginnng with class BZ, the TCB must separate those siements that are protecuon criucal from
those elements that are not. Class B3 and above requires that the TC3 should be minimized in compiexity
and magy not contain modules that are not protection cincal Protecton critical elements are these whose
normal funcaon is w deal with the conaol of accesses betwesn subjects and objects. Clearly, there are
both feawres that are and are not protection critical for a runtime system providing servicss o several
applications.)

There are two fairly convincing reasons t©o argue that the runtime system shouldn't be a wusted pro-
csss in the operaung system TC3. First, since gusted processes are not mediated via the security kemel
but are part of the TC3. they are subjected to stringent assurance requirements. In particular, a leveis B2
and above a thorough covert channe! analysis must be performed. Second, it is hoped that in the fumre
many secure operating systems will become availavle as Commercial Off The Shelf (COTS) software. To
expect that such sysiems will include an Ada Runtme System as part of their TCB is unreasonable,
because not all customers will want such support

Rather than reject the concept of shared runtime systems, we propose that shared runtime support be
provided via a qusted subject (see Figure 4). With this proposal. a shared runtime system, which is archi-
tectrally an operating system subject. supports several applications. Careful consideration is nesded. 0
determine if all applications will be supported by the same runtime system. Possible scenarios include:

o One shared mindme system.

¢ One shared runtime system to support all gusted applications, and one shared runtime system 0
support all ungusted applications.

TA==iraned appiication TRS—uguned rantme sysiam
UA=-untrusieq spplicsion URS—umrusted runume synem

] exiended TCB

Figure 3 - Private Runtime Systems

e All appiications at a given security level share the same nmtime system.

If the runtime system is shared imong applicatons at different security levels. it will have w0 be
usted. An uncrusted shared runtime system ts feasibie if sharing is resmicted 1© +'ngie, same-ievel applica-
dons. However, even if the shared runtime system is unrusted, its funcgonal integrity (its ability to behava
as expected) shouid be evaluated.

One dizadvantage to this proposal is performance. Each application that uses the shared runtime sys-
tem requires 2 minimum of two context switches when runtime support is requested. The first context
swich 0 make the application program inactive and the shared runtime system active, and a second con-
text switch 10 make the shared nmtme system inactive, and the application program active. All context
switches are mediated by the security kemnel, which will aiso siow things down. Shared memory migit
reduce the number of context swircihies required in some instances.

2.4. B2-Like Requirements, Shared Runtime Systems

Before 2 Trusted Ada Runtime System can be built, the criteria for building one must be understood.
In this section, we look at TCSEC criteria and begin interpretation of the B2 criteria for a Trusted Ada
Runtime System. This interpretation applies specifically to shared runtime support, becanse the criteria for
privaie runtime support must be interpreted within the domain of the individual application.

2.4.1. Security Policy ' !

A security policy is a statement of rules, laws, and practices that regulate how information is
managed, protected, and disseminated. SmcemeTCSECmmuyaddmconﬁdmmhty(asopposedto
integrity and sexrvice assurance), this interprezation of the TCSEC will do likewise,

Asecm:ypohcyandfomalecumypohcymddfcmemnunnmeSysmwdlmedwbe
developed. Bell and LaPadula, the most often used formal model, requires identifying subjects and objects
and then showing that access 0 objects by subjects does not violate the simple security property or the *-
propesty. The only subjects will be Ada programs. The objects will probably be the same as operating

m eoe TA trusted UA ve UA

Figure 4 - Shared Runtime Systems

system objects (e.g. files, devices and memory).

232, Accounmability

There must be a means t0 assure individual accounmbility of actons. Thus it must be possible w
authenticate an individual’s identity and audit an individual’s actons. The TCSEC idendfies the need for
passwards 10 authenticate individual users. The only users of the Ada Runtime System will be Ada pro-
grams and their identity should be authenticated by system labeis, Audit requirements should be very simi-
lar w those currently raised in the TCSEC.

2.43. Assurance
Assurance objectives help to guarantee that the security policy is enforeed. Lifecvcle assurance
requirements ensurs that te system was designed, developed. and maintained properly. Operational
assurancs requirements ensure that the system architecture provides protection from external interference.
We have idendified several issues that must be addressed.
1. All interfaces between the Ada program and the Ada Runtime Sysiem must be defined.
To satisfy B2 criteria, the TCSEC requires that a descriptive wp level specification (DTLS) of the TCB
be developed and mainained. It must be an accurate descripdon of the TCB interface.* ARTEWG has
done some preliminary work in this area by defining A Model Runtime System Interface for Ada."”
This waork could be wed as 2 smrtng point, but the acmal TCB interface will probably be somewhat
different.
2. All incerfaces between the Ada Runsime System and the trusted operating system must be defined.

4 Nom thu this is acoually the exsanded TCB inssrface (ses Figars 2).

It is assumed that there -vill be a qusted operating system (either Ada or non-Ada) underiying the Ada
Runtme System. The DTLS for the Ada Runame System must idendfy ail interfaces o the underiying
operating system. This is in addition 0 the requirement that all interfaces between the extended TC3
and the Ada program be idendfied.

Note that this requirement is not identified in the TCSEC. The TCSEC was developed for general pur-
pose operaung sysiems. It does not specifically recognize (although it similariv does not prohibit) the
musted system architecture presented in Figure 2. We believe that all gusted subjects will have w iden-
ufy two TCB interfaces: between the extended TCB and user, and berween the trusted subject and
operating system TCB.

3. A thorough search must be conducted 10 ensure that covert channels are not introduced.

The trusted operatng system will enforce mandawory access congol. but the introduction of a gusted
Ada Runtime System could inroduce covert channels. Recall that tnere are many alternatves for the
runtime system design. ranging from all Ada programs sharing one runume system 0 only programs of
the same secunity level shanng runtime systems. If any alternative is chosen that allows Ada programs
with different secunty levels to share runtime systems, then covert channeis could be introducsd and
must be analyzed.

This does not represent a complete imerpretadon of the TCSEC for Trusted Ada Runume Systems.
but it does address some of the most obvious and interesting requiremr.ents thai need w0 be considersc m
developing a B2-Like Ada Runume System. Integrity and service assurancs requirements must aiso be
defined.

3. The Development Environment

Thus far, this paper has beea concemned with the secunty issues of providing runtime support in the
operatonal environment. It has idendfied two alternatives for providing such supperz 1) 2 private Ad2
Runame System that is inciuded as part of each Ada application program: and 2) an Ada Runume System
that is shared by several (or ail) Ada application programs. Now we examine how the security requure-
ments for each of these alternatives are related to the security requiremen:s for the development environ-
ment

3.1. Private Runtime Support

In this section, the provision of separate runtime support for each application is examined. As Figure
5 shows, there is an Ada Development System (ADS) that consists of several software wols that perform
the task of ansforming Ada source programs into Ada executabie programs. The inputs o the ADS are
sources modules and Ada Runome Library routines. The output is an executable moduie, which may
represent either a wusted or unwusted Ada application. The following discussion identfies requirements
piacsd on the development environment for trusted appiications (those applicatons that are part of a TCB).
and, where appropriate, requirements for unmrusted applications.

3.1.1. Assumptious

The quality of the source modules is one of several fac:ors that can affect the executabie module pro-
ducsd in the development environment. Nonetheless, for the purposes of this paper, we assume that the
functional integrity of the source modules is beyond refute.

3.1.2. Functional Integrity of Runtime Library Routines _

A key concem is the indoduction of runtime library routines into trusted applicatons. The Ada Run-
tme Library is a set of routines, typically not available in source form, provided by the ADS vendor. Intro-
ducing these routines, which potentially contain malicious code, into a trusted applicadon is a violation of
TCSEC assurancs requirements. Malicious code placed in a crusted application in the development
environment could result in a security policy violation in the operational environment.

Thus, it must be demonstrated that the Ada Runtime Library routines have functonal integrity.
Source of the routines must be available, and the routines must be shown to be correct. compiete, and exact
implementadons of therr requirements. Though we recognize that it is not possibie 10 show absolute

~3

i

Adn Russsps Lidwwry

Figure § - The Development Eavironment

functional inegrity, appropriate assurance techniques for the level of wust desired must be used These
may include: formal specificatons, informal specificadons, testing, and extensive peer review.

Functional integrity of Ada Runtime Library routines may aiso need 10 be established for unmrusted
applizations. As described earlier, we define a ousted application as enforcing a securiry policy within a
TCB framework. There may be applications that contribute o overall integriry and assurance of service
requirements, but that are not part of a TCB. We expect thar these ungusted applications shail also require
tne Ada Runtime Library roudnes 0 have functional integrity.

3.1.3. Svaracuc Integrity of Runtime Library Routines

Once the funcdonal integrity of Ada Runtime Library routines is eswablished. it must be maintained.
Thus, there must be impiemented within the development environment an integrity policy that enforcss the
syntactc notion of integrity. Syatactic integrity consgains access purely on a computational level, without
regard for the content of the protected resource. The syntactc integrity policy must prevent unwanted
modifications 0 Ada Runtime Library routines. Biba defined a mandatory access control poiicy o provide
such proteczion, but a discretionary access congol policy might aiso be ussd.

3.1.4. Compiler Interactions

There is a close te betweer: Ada rundme library routines and the Ada compilation system. During
compilation, the compiler tansiates the Ada program into machine language. The compiler has two
choices for providing runtime support. The compiler may provide runtime support by implicity invoking
runtme routines, or the compiler may simply generate inline code. The nmtme routines are said w0 be
invoked implicity because calls © supporting routines are not visibie in the source code. 5

The preference is 0 have runtime support provided with implicit calls wo runtime library routnes,
rather than inline generated code. This approach allows a clear delineation between the Ada Runtime
Library and the Ada Language Compiler, benesicial because it is significantly more difficult to provide a
wusted Ada compiler than it is to provide a Trusted Ada Runtime System. By carefully delineating the two
tasks, a Trusted Ada Runtime Sysiem can be built without a rusted Ada compiler. Of course, we must
recognize that the untrusted compiler may sabotage the runtime system.

3 Ada aiso uies explicit rntime support, whers calls 10 Ads Runmime Library rowtines are visibis in the sourcs code,
Cormpiler imaraction with explicit runtime support is less of & concumn becsuse iz merely requires tha the compiler correctly
generass cods 0 igvoks & sebrouting,

3.2. Shared Runtime Support

When shared runtime support is being provided for applicadons, the development environment
changes. The ADS still performs the function of wansforming an Ada program into an executable module,
but the Ada Runnime Library routines are no longer an input o0 the process. The runtime routines have besn
incorporated into an executable moduie of their own, and are aiready insiajled in the operational environ-
ment as the Ada Runtime System. Functional integrity of the runtime library routines and symtactic
integrity protection are issues that must have been considered when the shared Ada Runtme Sysiem was
built. Similarly, how the compiler and the nmtme library routnes divide the responsibility of providing
rungtme support must have been defined when the shared Ada Runtime Sysiemn was built. There are no
Ada specific responsibilities piaced upon the deveiopment environment when shared Ada Runume Systems
are used.

4. Conciusions

In this paper, we have examined security issues related o the runtime support that is required of Ada
programs. Specifically, we examined architectural approaches w providing tusted runume support, and
the resulting requirements placed on the development environment. Two alternative approaches for run-
time support are presented: private Ada Runtime Sysiems. one for each applicaton, and Shared Ada Run-
ume Systems, which are shared by several or all applications. Both alternatives seem feasible, but one may
be preferred {or a specific operational system.

The next step is 0 begin 0 build a wusted Ada Runtime System, by developing a deniled Yut infor-
mal specification of the security relevant Ada Runtime Library routines. This specificaton would serve as
the basis fur 2 DTLS for shared nntime support and as documentation of runume library rovtines intro-
duced inw the applicadon for private nintime suppar. The ARTEWG Model Runtime System Interface
can be used as a starung point for this work.

-

3
y:
O3
' -
71
(@]
o~

DRRT BRI 313 RCUSTOMLCRRSCF:

n
1‘._3
3

POSITION PAPER

ACCESS CONTROL FOR A SAFETY CRITICAL DISTRIBUTED
SYSTEM INTERFACE SET

Sue LeGrand. Planning Research Corp.
January 2, 1990
The Problem

The National Aeronautics and Space Administration (NASA) must
guarantes the integrity of mission and safety critical componeats in
large, complex. non-stcp, distributed environments such as the Space
Stadon Program, the Lunar Base, Mars exploration. and other projects
for which Ada is the programming language of choice. Run time
issues include real time performance, reliability, fault tolerance,
survivability, and dynamic exteasibility and reconfiguration in noa-
stop eavironments.

All access to safety and mission critical components of the svsiem
that is granted to users must be monitored and controlled for the
appropriate operations, resources and constraint enforcement of
time, location and other reswictions. In addition. accsss may be
dependent upon modes of operation: different management domains
for subjects. targets and intervening message paths: and normal
versus exception contexts. Integricy must be assured at all times in
the life cycle against the hacker who inadvertendy causes damage,
the terrorist who maliciously seeks to cause desmucticn, or a
disgruntled former staff member who [eaves with potentially
dangerous knowledge. Furthermore, there must never exist a
thread of conorol that runs amok (i.e., may be unresponsive to
commands and is in an eternal loop occupying system resources
and/or may access critical resources).

Systems which contain only the policies, manual procedures,
encryption., passwords and other traditional means of security and
integrity management cannot provide solutions to the above
challenges. Much of the public domain research to support computer
security and integrity has been conducted in a static host
environment that uses shared services and resources managed at a
low level with an untyped interface. These systems are a composite
of different paradigms and device characteristics.

1/30/90 [:33 PM 1

¥
2:
n
i
)
1@
L

The preoccupation with these static issues does not provide solutions
to the dynamic (runtime) issues of a big and growing class of
applicadons; namely large, complex, non-stop, disaibuted systems
which evolve incrementally and must provide life cycle support for
mission and safety critical components.

A system is needed with a runtime enforcement of the security and
integrity policies. In order to provide this, three needed elements
are:

A stmongly-typed object oriented operating system with
assertons-based enforcement of coastraints.

A dynamic, capability-based addressing design for subjects.

A dynamic access control list design for targets.

The Prototype

Spoasorship is being sought for a security and integrity assured
prototype to be developed within the context of a mission and safety
critical system that supports fault tolerant and fault recovery
software and hardware components.

The models, techniques and tools will be developed to support the
goal of runtime software insguments for automatically evaluating
the security and integrity effectiveness of object based computer
systems.

The models, techniques and tools will be designed and evaluated in a
multuser, multilevel security and integrity environment that is
supported by an object management system with assertions-based
enforcement of constaints in the system software. This object
management system will control access to all resources of the
system, rather than just the database. This environment will be used
to demonstrate optimal performance and ease of use with a
transparent, distoibuted and multiprocessing computer system.

[

1/30/90 1:53 PM

313 =ILETIM_CRRICAS s,

{0

J

- S .~ amma = e meman, e ama
| 3L °30 (228 DMART FECI 513 =CUSTIMOIRSECR:

Ll)

This research will demonstrate ths benefits of using consistent and
precise models based on an object oriented paradigm to satsfy the
security and integrity requirements of computer systems. This
research will be conducted within the context of a mission and safety
critical distributed, non-stop, multicomputer system that must
sadsty dynamic accsss control of multiple users, even in the presence
of fauits, upgrades and reconfigurations.

A plan for tesdng this type of access conmol calls for multiprocessor
clusters (at least 3 procsssors per cluster) interconnected by a high
speed. determinisdc local area nerwork (LAN). In turn the LANs are
connected by a wide area nertwork (WAN). The plan calls for a test
bed WAN to integrate a minimum of 3 LANs where each LAN has a

minimum of 3 clusters and each cluster has a minimum of 3
processors.

An associated goal is to evolve the tesibed to demonstrate proof-of-
concept of dynmamic extensibility such that no softwars changes are
needed to add or remove LANs, add or remove clusters of a LAN, or
add or remove processors within the cluster. The systems software
(e.g.. the processor kemels and the run time library medules)
provide support for the access contrel while also satisfving the
requirements listed above. This includes ncn-stop modifications to
advancs or regress the operatonal baseline.

This protocype project is a subset of a larger erfort of the High
Technologies Laboratory (HTL) located at the University of Houston -
Clear Lake near Houston, Texas. The HTL goal is to reduce risk in
computer systems and software engineering issues which are
considered critical to futurs missions of NASA. HTL works with
private industries and government agencies other than NASA. The
project is associated with the Software Engineering Research Center
(SERC). which is a wholly sponsored research center by the long term
research division of NASA Headquarters with the same mission and
priorides as HTL. Dr. Charles McKay is director of both SERC and HTL.

W
LI
0
P
—
(V2]

1/30/90 . 1:

Low Ada
and a
Trusted Ada Kernel

John McHugh

‘Computational Logic, Inc.
30 January 1990

One of the potential worries in developing trusted Ada applicatons is the
trustworthiness of the Ada runtime system. Anyone who has been confronted with a
half megabyte core image of a trivial program has wondered,

1. "Is this really necessary?”

2. "What's in there?"
Part of the problem comes from the immaturity of the Ada technology, estecally as
regards partal use of predefined and library packages. Another part of the probiem
comes from a tendency of developers !0 simplify compilation through the extensive use
of runtime support.

The results of such an approach run counter to the minimalist maxims of ‘rusted
svstems. TCBs that are intended to provide high levels of assurance are consiained to
contain all and only the trust enforcement mechanisms of the svstem in queston. This
is true whether the system in question is being used to provide security in the sense that
information compromise is prevented, or whether it is being used to assure the safe
operation of a vehicle or other machine. The minimality of the TCB is undermined if
the size of the runtime system required to support it vastly exceeds the size of the code
due to the compilation of the TCB.

Several recent developments hold promise for helping to bring this situation under
control. Requirements from the Ada 9X workshop held last spring in Destin, Florida
cail for compiler vendors to disclose more of their implementation dedisions. This
incdudes decisions that affect the choice between runtime support and inline ccde for
certain constructs. This call was echoed at a recent Ada 9X trusted systems workshop
hosted by IDA, espedially with respect to heap management and the need to avoid the
use of a heap for well-behaved applications that eschew explicit dynamic allocation.

The latter workshop also brought forth a call for both a standard intermediate
language (Brian Wichmann's Low Ada proposal), and for the development of a
standard runtime kernel for use with trusted or safety-critical svstems. Low Ada is
viewed as an Ada-like language with a simple static semantics that can be produced
from an Ada front end. Low Ada would have formally-defined static and dynamic

semantics that would permit the verificaton of Low Ada programs as well as other
forms of static analysis. The trusted kernel can be viewed as providing runtime suppor+
for, at least a subset of, the program that could be written in Low Ada.

I propose an extension and unification of these ideas. Low Ada is a much more
flexible language than Ada. Many of Ada’s type restricHons and enforcement
mechanisms would be enforced in the Ada to Low Ada translation process, but are not
part of the Low Ada semantics. This makes it possible to write many programs simply
in Low Ada that are difficult or impossible in Ada. Substantial portions of a runtime
support svstem fall into this category. Although originally intended as an intermediate
language alone, it appears that Low Ada could be used to implement large portdons or
an Ada runtime system and/or an operating system kernel for use in support of trusted
and safety-critical applicatons. Given a formal basis for Low Ada, a formal
spedification for such a kernel would agpear to be tractable.

Development of such a kernel would provide an opportunity to explore a number ot
trade-offs that concern both security and integrity. If heap management is included,
how is memory reuse achieved? Are there reasonable ways to suppor: multilevel
tasking in Ada? What is the role of the runtime system in promoting data integrity?
Can such a system provide process integrity?

It is cdlear that this proposal presents a number of research issues, some of which are
already being addressed in oulzer forums. Work at Computational Logic, Inc. is
intended to produce a formally-defined subset of Ada, known as AV A, with a rigorous
definition in Boyer-Moore logic. An attempt to provide a formal translaton mechanism
from AVA to Low Ada is being considered. Issues connected with tie formal
specification of operating svstems are being addressed in the context of Mach by several
researchers. Spedfication components for Ada are available in the form of Anna and
Larch. Work to link "Z" to Ada is being considered.

A rustworthy Ada runtime kernel in Low Ada would draw on all these efforts, and
could provide a vehicle for unifying and focusing Ada trusted systems research in the
near term. As Ada approaches maturity, it is important to look beyond the problems ot
first generation systems and address some of the open issues in security and integrity in
an Ada context.

Identity as a Basis for Ada Run Time Environment
" Security and Integrity

|
|
|
: Jon Shultis

February 16, 1990

1 Position

Ex:ension of the language-level policy of strong typing to all resources i an Ada eavironment,
coupled with more expressive typing, provides an eSective and practical meazs of achieving security
and integmity. ..

2 Backg:.%ound

For preseat purposes, a security breach is any behavior of a system that provides unauthorized
access o information or control. It does not matter whether the erzant behavior is produced
intenticnally or accidentally; in either case thers is an opportunity for abuse. The pkrase “any
behavior” is here meant in its broadest sense, so that such things as cover: timing channels are
covered by this definition.

Axn integrity breach is any modification of information or control whick compromises its ac-
curacy. It matters not whether the modification is authorized or unauthorized; in either case
improper computations, decisions and actions may resuit. Obviously, integrity breaches may com-
promise security iby corrupting mechanisms that eaforce policies, and vics versa.

Note that these definitions classify accidental modifications of data due to eavironmental con-
ditions as integrity breaches. Such breaches of integrity are to some exteat unavoidable, aad more
robust systems will enable detection and repair of integrity failures. In what follows, however, we

1This work was supported in part by DARPA under contract MDA 972-38-C-0076.

t

l

Ve

shall focus on the problem of maintaining security and integrity in an idealized world of Sawless
physical devices. - |

The probicm before us is to find & means of achiaving secusity in Ada run time environments,
The solution we propese is based on a familiar, if somewhat naive, view of strong typing discipiines
as language-ievel policies for controlling access to information and control

In this view, any operation in a program is regarded as a consumer and producer of reouress.
The signature of the operation specifies the type and accens capabilities which the operation has for
each resource it manipulates. Language rules for inheritaace and subtyping gover= the propagation
of access authorizations. Iz “orange book” terms, we have the following rough correspondencs:

e type d.isciplfme = security policy

o typing = markmg

o ovezload resolution (operator identification) = idedtification

type checkiﬁg and ervor reporting = accountability

compiler va;ndstion = ainu:ance

e compiler protection = continuous protectica
|
With this csr:séondcnca, a “secusity breach” occurs in an Ada program if an operation is pex-
mitted to accees data of & {ype or in a mode not authorized by its signature,

The specific policies of the Ada type discipline do oot fulfill many of the speciic objectives
for various modeis of wTusted systems, such as hierarchical senmsitivity classification. Moreoves,
the responsibility for enforcement even of the type discipline does not extand very far beyond
tZe boundaries of a ccmpilation unit. We contend, however, that an appropriate geaeralization
and extexzsion of the type discipline to all resousces in the environment can be used to flfill the
objectives of trusted syste=s at a very high level

Two indepeadent extensions are indicated. The first is to extend the domain of the tyve
discipline %o include all resourcss in the environment. Current Ada run time environments assume
tzat azy responsidility, even jor simple Ada type integrity, stops at the boundary with the host
operating environment. For example, when a file with a given Ada typeis written, it is representad
Oy an odject in the host environment which carries no informaticn about its Ada type, aad its
integ=ity as an object of that type is not guaranteed by the host eavironment. From a security
standpoint, this is intolerable; it is simply not possible for a system to be secure if it routinaly
tzaasfers information of all kinds to an insecure domain where it may be subjected to arbitrary
analysis aad transformation without any eaforceable controls or sudits. Of course, this problem
is 20t unique ta Ada, but pervades the architecture of all compartmentalized, as opposed to
integrated, software systems (which is to say, all existing commercially available systems).

The second is to extend the expressiveness of types to enable specification of properties of
icformation and control which are relevant to security, suck as resource behavior axd sensitivity
classifications. Note that the extended type system which we propose is to be imposed oz the
un time eavironment, but not necessarily on the Ada language itself. In order to be used in
a secure environment, components written in Ada would, however, be required to undergo aa
analysis to verify their properties vis a vis the security requirements of the inteaded appiication.
Thus our proposal caz be realized either by changes io Ada, or more conservatively by requirizg
Ada corzponents to obtain security clearance before accessing seasitive resousces. Specification of
security properties aad analysis of programs reiative to those specifications caa be aciieved iz a
variety of ways, for exampie along the lines of Aana.

The remaining discussion is devoted to explaining what extensicns are required and 20w they
can be accomplished.

3 Strongly Typed Environments

Any access control policy wkaich is to be exfcrced throughout a run time ezvironment reguires
positive identification and classification of all sesources in the eavironment, inciudizg persistent
daza, processes, aad (physical as well as abstract) changels. Positive identification requizes ozly
thas every (sscognized) resource be assigned a universally unique, location-indepencent idexz:ifies
(uid). Positive classification zequirss that each rssourcs be associated witl a type. Note :hat
every type is itseif a resousce, so the association can be represented by a pair of uid's, one icr ize
Tesource azd one: for its type.

A remarkably simple notion of type suffices o obtaia the expressiveness required for classifica-
tion: a type is a set of properties, closed under entailmment. Thus, for exazpie, one properzty of a
type of interacsive program might be that its response times are independent of mermory azd cpu
lcads, at least within a given range. This is not the place to expand oz this topic, but it is worsh
aoting iZat there is a natural notion of subtyping and inheritance in such a type system, in which
subtypizgz amounts %0 specialization. This feature is critical to the definition of suck things as
security classes, which are metatypes (types of types), the exampies of whick are types that carsy
security properties common to the class. Access controls are defned on classes, azd automatically
inheritec i1 a uxziform way to all subtypes. Such things as hierarchical classificazior lattices caz
be embedded in the type latiice in the obvicus way.

Of course, determining whether a given Ada program exhibits such properties is depeadent
on the s*ate of verification technology, and we fully expect that many types which would be used
in specifying secure systems would be extremely dificult to verify with current technology. This
should not prevent us from specifying them, however, nor should it prevezt us fom providing
provisional, or partial, assurances. A system in use is suspect to the extext its clearacces depends
cn incomplete proof obligations; but it is useful to know precisely what the expectations ‘or a

system are, and the extent to which those expeciations are not kaown to be met.

The library system for an Ada compiier may provide some insight into how these extensicns
codperate to impiement policy in the environment in a relatively simple situaticn. One of t2e
more ealightened aspec:s of the Ada design is its ecognition of the need to extead the domain
of responsibility of the type system beyond the boundaries of individual compilation units. Ada
implementations are therefore raquired to enforce a palicy goverzing access to library units, whese
in this case the subjects are library units aad the objects are other library units samed i context
clauses, By associating a universal id with eack compilation of a specification, it is pessible to
assign a “signature” to each libracy usit. The signature specifies the other licrary units waich the
given unit is authorized to access. The rules regarding compilation ordex, access %o lbrary urits
and subunits, and linking amount to aa acsess control policy governed by these signatuses.

When a unit is compiled, symbelic references to other units are resclved to corzesponding
univessal id's, and the symbolic names are discarded. In all subsequent uses of the compiled uxit,
its preferences to other library units are mediated by the universal id's.

When a unit with a given symbolic name is recompiled, the objects wkhick previously weat by
that aarse in the library ace replaced, and become inaccessible. Thus azy subsequent atlempt o
use a unit containing a rfereace to the obsolete unit will fail, theredy enforcing Ada's poiicy oz
compilation order.

For another simple (but perhaps more pertinent) example, let ¢ be a security ciass, aad let
e(file of t) designate the subtype of class ¢ consisting of iles containizg objects of type t. Acsess 20
such a Sle is mediated by the run time environment, which must certify that i2e agent accessizg
tte ile Qas the authority to do so. Suppose that the immediate agent is aa Acda progra=. azd i2e
authority requizec is that t2e program has certified the autlority of a huran user interaciizg wita
ke program %o obtain tae given access. The security property wiich is required of t2e program is
taat it has cacsied out some authentication protocol with the user prior to requesiing the access.
If the program in question has beea certified 'Sy whatever means) as always carrying out tle
required protocsl, them that fac: will have beuu recorded iz its type (sigzatuze). It is :herefore
a simpie matier for the run time enviroament to clear the program for the requestec access by
matching the relevant part of its signature against the type of the classified resource.

USING ADA TO
SIMPLIFY ENCRYPTION SYSTEM ARCHITECTURES

William R. Worger, Senior COMSEC Systems Engineer
Michael A. Diaz, Senior COMSEC Software Engineer

ABSTRACT

Traditionaily, guarantesing that Red (sensitive) data is not accidenmlly released to an adversary
has been one of the most difficuit and expensive problems in designing encrypdon systems.

The difficuity arises in artempting to prove that Red data cannot be reieased to the adversary
even in the event of a hardware failure, Typicaily this proof takes the form of a Singie Fault Analysis
(SFA) on the system. The SFA analysis is used to verify that any single failure (Hardware or
Software) will not cause a release of seasitive data to the adversary. The cost of this SFA analysis
increases exponentially with the increased complexity of the hardware or software. To reducs the
expense of this analysis, the system designer must partition the hardware and software into small, easily
analyzed secxions.

Tradidonally, encryption system architects completely separate the porgon of rne'sysm:n which
processes Red informarion from the pordon of the system which performs black (non-seasidve)
information. This resuits in a system which contains two processor subsystems: 3 Red procsssor
subsystem and a Black processor subsystem.

From a performancs sundpoint, the dual processing system is not necessary since today’s
processor can easily handle both the Red and Black processing loads in the encrypdon system. The
resuit is that traditional encryption systems conmin twice as much processing circuitry as would be
required if only one processor were used o perform both the Red and Black processing functions.

Thispapapmmmasinglepmmrmypﬁmsymmhimwhichusesvaﬁous
features of Ada to ensure separation of Red and Black dara in the system. Also discussed are various
precautions which must be employed when using a high level language in an encrypton system. This
paper conceamates on the software architecture of the system but also includes several hardware
consideragons.

INTRODUCTION

In taditional encrypdon systems. guaranteeing that Red (sensidve) dawm is not accidenrally
released 10 an adversary has been one of the most difficult and expensive probiems facing the designer
of these systems. It is generaily regarded that the only thing worse than not encryptng seasitive
informarion is thinking that the information is being encrypted correctly when in reality it is not. In
this simation the user freely yansfers sensitive information because he or she rusts that the eacryption
system is protecting the information propedy.

To guarantee that the system will not reveal sensitive informaton. even in the evear of a
failure, the system designers will generally perform a Security Failure Analysis (SFA) on the system.
The SFA analysis atempts t0 prove that the system cannot fail in 2 way thar would allow sensidve
information (o0 be released ®© an adversary. The SFA analysis should cover both the hardware Jesign
and the software design o be effective.

The cost of proving the correcmess of both software and hardware incr=ases exponengaily
with the increase in the complexity of the system. This has forced the system designess w develop
architectures that atempt © isolate the Red data from the Black data,

Figure | shows a typical architecture which reduces the SFA efor. The architecurs is
separated into two isolated subsystems: tie Red procsssing subsvstem and de Black oroesssing
subsystemn. The Red subsystem preforms all of the processing and memory management asscciated
with the sensidve data and the cryprograpiic kevs. The Black subsystem pertorms ull of the orocessing
of the encrypted data and usuaily performs the user interface funcdons. Each of these subsystems
contain separate RAM, ROM, microprocessors, clocks, and address decoding circuiay. The Red and
Black subsystems are connecwed via some (ype of encrypdon system which encrypts all data being
ransferred from the Red subsystem to the Black subsystem.

This architecture is very easy to analyze since all dara which fows from the Red subsysiem
to the Black subsystem flows through the encrypdon system. To prove that Red information is not
released to the Black processor, only monitoring the encrypdon block for correct operadon is needed.
This can be done by using redundant encryption blocks or by placing monitors to verify the operadon
of the encrypdon system.

Although the architecture in Figure 1 is ideal from an SFA standpoint, it is very ineficient
from a hardware and software usage standpoint. [n many syswems, a single processor has sufficient
power to handle all of the processing needs of the entire system. In these cases the architecture in
Figure 1 will be twice as expensive and take twice the room of a system which shares a single
procsssor 0 preform both the Red and Black processing funcdons. The system in Figure 1 will
genenaily require two operating systems, (WO Mmemory management system and two sets of self-test
software, one for each processor.

In the remainder of this paper we will present an aiternate architecure which shares one
processor 0 periorm both the Red and Black data processing, We will discuss ow the Ada language
can be utdlized to simplify the SFA amaiysis of the system and guarantes Red and Black data
separation.

The proposed architecture is showa in Figure 2. This architecture is similar o the gaditional
architecture in that there are separate Red and Black memories which are connected by an encryption
funcion. The architecture deviates from the traditional architecaure in that the system uses the same
processor 0 perform both the Red and Black dam processing.

The proposed architecture will be more difficuit w0 analyze than the Tadidonal architecture.
However, the anaiysis task can be reduced o a manageable level by using the Ada language ©
caresuily parttoning the system software so that the Red and Black software roudnes are logicaily
isolated. In logicaily isolating these routines we hope to achieve the same [ype of isoladon hat is
achijeved in the taditional architecture, while reducing the parts count and sysiem size by up © 2
faczor of 2.

ENCRYPTICN SYSTEM

.""“"““"“"""""“““"“"“"“'.

:

USER
INTERFACE

‘h\s\\§‘\ss-tsb-‘sssyshws‘“ssssstt“\\

-—ww

L] [
’ [
AED BLACK —
. - sensnve ’ (NONSENSITIVE)
L /]
’ [
(] ’
[]
’]
. AED ! BLACK
p PROCESSOR p PROCESSCA
[}
‘ :
] [
] [}
[[}
[
‘ p
] ’ '
agnng . p
’ ’
. PLAN — CiPHER
CaYPTO . TEXT TEXT
KEYLCAD [T i} ENCAYPTION fommm i
[
(] -
’ '
’ ¢
. :
. AED KEY v RACK
: (SENSITIVE) . (NONSENSITIVE)
: MEMCRY ’ MEMCRY
PLAIN TEXT ’ .
OATA SCURCZE fglp Yy .
AND SINK ' PLAIN CiPMER
, L..._"__E‘T_ DECAYPTION =T
.
’ [}
. p
[. &m
] - g
[] 1]
] [
['l
]]
[[

Figure 1 Traditional Encrypticn System Architecture

L RN A I E N

LA A A AL A B 20 B B IR A I BF JF B B 2 2 B B AF I I I I I P B AP B A AP R R N I R R A Y X N

00791

1

cipwga 2T |
DATA SCURCSE ‘
ANQ SINK

1

i — RED

Peesswesew:

CAYPTQ . USER
[}
‘]
¢
¢
AED CAYPTO . BLACK
MEMCRY . MEMCRY
t, ’
{ PLAIN TEXT v ¢ CiPMER TECT

OATA SCURCE gt ' ZATA SCURCE |

AND SINK . == TN sink '

TP ST 7y (o T N — ——
[
[
’
[]
[
I
’

' omz79-2

Figure 2 Mocdified - Encryption System Architecture

Using Ada For Logical Separation
During our work in designing security architectures we have found that we must use a
combinaton of hardware and software to ensure total Red/Black isolation. Ada has helped us achieve
this isolation. Some of the software consideration required o achieve isolaton include:

. Use of Ada informarion hiding and package separaton to isoiate Red and Black routines

. Parameter passing pointers 0 Red dara

. Disabling of interrupts during Red processing routines

. Not using Muiti-tasking in secure systems

. Not using boolean type for binary flags

. Using more than one loop counter in software loops

. Inciuding processor seif-wests prior 10 processing Red dama

In addition w these soitware considerations it has been necessary o implement several hardware
functions which support the software. These include :

. Use of the User/Supervisor capabilities of processor to prevent black routines from
accessing Red data.

. Using physically isolazed Red and Black memories

. Using external checking bardware to verify the operation of the procsssor

In this paper we will concentrate on the software techniques and how Ada will can de used
to heip ensure logical separadon. We will discuss the various hardware techniques oniy Sriedy.

Ada’s capability 10 do "informaron hiding” has provea to be an excsilenr tool in providing
Red/Black separadon. Using information hiding, the designer can create a single Ada package which
performs ail of the Red data handling and processing. This package (we will cail it the Red Dau
Handling Package) must hide ail Red data from all other packages in the program. By hiding ail the
Red dara from other packages it prevents these other packages from accidenmily mistaking Red data
as black da,

The Red Data Handling package shouid be the only package which has access (o the Red
RAM. This accsss conmrol can be enhanced by using the supervisor state of the processor. If we design
the hardware so that oniy the Red data handling package is run in the supervisor mode thea we can
add hardware which disables the Red RAM except when the processor is in the supervisor state. This
will also heip to ensure that all packages other than the led Data Handler Package are physically
denied access 0 Red RAM.

Data can be exchanges berween the Red and Black packages only through the encrypdon
funcdon. It is the responsibility of the Red Data Handler 1o send Red data w0 and recsive Red data
frcm the encrypdon functon.

Isolating all Red data handling operadon in the Red Dara Handler package also simplifies the
analysis funcdion. This is because only rournes which have access w0 Red data ne=d 0 be analyzed
and only the routnes in the Red Data Handler package have access © Red dam. If the Red Daw
Handler package is kept small (less than 4000 lines of code) then the analysis task will be simpiified

Although using Ada’s informadon hiding capabilities is a big step towards dara separation it
is not sufficient © guaramee separarion. There are several other accidental ways that Red and Black
dara can be mixed. One of the major accidenral mixings can occur when one Red Daw Handler.routne
is passing red dara as a parameter to apother Red Dara Handler rourine. In general, Ada wiil be using
the Black RAM for stack. If the calling routine were 0 pass the Red daw by value then the Ada
compiler will placs the Red data on the stmack (Black RAM) prior w cailing the destinadon roudne. In
this case, the Ada compiler has inadvertendy written the Red data into Black RAM. To prevenr this
from happening the software engineer must pass all parameters as pointers ©© Red RAM instead of
passing the parameters by value.

Another requiremerz is © disabie all interrupts when in the Red Data Handling package. This
requirement is necessary to allow the code w0 be analyzed. It is difficuit encugh o oy 0 analyze
code whea you know the exact sequence of code execudon. It is impossible © analyze code if there
is 3 possibility thaz the sequence of execudon will be cianged at by an interrupt

Like interrupts, muiti-tasking in 3 secure environment shouid also be avoided. Uf muit-usicng
were (0 be used, a security analysis of the Ada Run-Time System would be required 0 venfy proper.
operaton. The run time system in much 00 compiex o be analyzed. Resources availabie for evaluadng
software on a secure encrypuon system are limited and it is doubdful that more than 4,000 lines of
code couid be evaluated. '

Another concem in a secure system is that the software is operating correcly on the hardware.
The software should contain as many checks on the hardware as possible to ensure that the hardware
is not malfuncdoning. Two simpie checks that can be integrated into the Ada code which ire the
dedinidon of a new boolean type and the use of auxiliary loop counters in all loops.

The Ada boolean rype should oot be used in secure system since the hamming distancs becwesn
True and Faise is only 1. This means that a singie bit failure in the boolean flag can cause a True to
be interprezed as a false or a vice versa, It is much bexzer © define a new boolean type which assigns
OOH w True and FFH w® Faise. This provides a hamming distance of § which will prevent single bit
errors from causing improper operation. In addidon, the Ada range checking opdon should be enabled
to verify that boolean variable can only take on the True and Faise values and that ail other values will
cause an excsption. '

Auxiliary loop counters should also be used to ensure that a single bit failure in 2 loop variable
will not cause improper operation. By using two counters for each loop, the original loop counter and
an auxiliary loop counter, and comparing these counters at the end of the loop, single bit error can be
deteczed.

Ada Exampie
An Ada package using only machine code insertions can be developed o impiement the Rad
Data Handler Package. The use of machine code inserdons will guarantee that Red Dara is not stored
in variables which would require the stack if passed as a parameter. All parameters can be passed
using pointers or tie processors internal registers.

The use of object oriented design can associate particular functons to areas in the Red RAM
used 0 swre different types of daza. All of these funcdons would have the requirements idendfied
for a Red Processing System imposed on them. For example, the Red RAM lccadon idendsded for
holding the common key may have the foilowing funcdons associated with it in a subpackage:

Receive_From_Red_Input_Port (Red_Input_Type)
Transfer_To_Encryption_Eagine (Algorithm_Type)
Transfer_From_Decryption_Engine (Algorithm _Type)
Parity_Check

Clear

The Red RAM location idenrified for hoiding Plin_Text may have the following functons
associated with it in a subpackage:

Receive_from_Red _ _Port (Red_Input_Type)

Encrypt (Algorithm_Type) — Sends 0 Plain_Text.Encrypt
Accept (Plain_Text_Type) — Reczive from Cipher_TextDecsypt
Transmit_To_Red_OQutput_Port (Red_Ourput_Type)

Clear

Black RAM used by the Red Dama Handler does not need Ada machine code inserrions. Object
oriented design techniques and packaging would stll be used in order © encapsulate data and promote
information hiding. Funchons associated with encrypted cipher text data can be packaged as follows:

" Accept (Cipher_Text_Type) — Transferred from Black system or Plaintext Eacrype

Transfer To_Black — Transfer to Black Processing System

Deczypt (Algorithm_Tvpe) — Decrypts and mansfers to Plain_TextAccept

CONCLUSION:
A combination of hardware and software techniques are required for a single processor
implemenmaton of 3 Red Processing System. Some of the requirements include:

. Informadon hiding and Ada Package dednidons should be used to logiczlly isolate
Red and Black processing routines.

. Physically separate Red and Black memory should be udlized in the sysiem

. The supervisor state of the processor should be used w enabie Red RAM operadons.
Only the Red data handling package should run in the supervisor mode.

. Red data parameters should be passed by address and not by value o preveat Red
data form being placed in Black memory

. Interrupts and muiti-tasking should not be used in secure systems.

. Care shouid be taken t use 3 hamming distance of 2 or more for ail loop counters
and boolean functions.

. Processor seif-test should be performed to verify proper processor operation prior to

handling Red data.

For a single processor impiemenration of a Red Processing System. Ada provides encugh of
the resources required for a high order language (machine code insertons, informadon hiding and
package constructs) in order o impiement a secure single processor design for the Red Procsssing
secdon of an encryption system.

This paper lists only some of the techniques which can be used when designing secure systems.
In general, the security level of the sysem will dictate which methods are applicable and which
methods are not

10

POSITION PAPER

PARTIAL VERIFICATION --
A PRACTICAL APPROACH Trtin Mariecta Informacion
& Communications Sysceas
P.0. Box 12690
Denver, CO 80201-1260

1. Concept

Alchough verification technology has existad in the research
communicy for many years, the principal use has been limiced to
exercises thac formally prove software correct. Wider acceptance
has been inhibiced by cthe perception chac the 2ffort involved in
proving sofcware correct can be orders of magnictude greater than
the affort to deveation

orocess to the consideration of selectad properties. The
axiscing cachnology allows one to define properties of a piece of
sofcwars and formally speciiy, through assertions withia an
anmoctacion systam, such properties. The eZZact of such a process
is co use verificacion technology, in the statistical sense, o
disprove che hypochesis chac the intanded use of a piece of
softwara is consiscent with a specified set of conditions. as
wich any sctaciscical approach, one cannoc prove cthat a piece of
sofcwarmentally tests and verifies that

the sofcware is not incorrectly used, one builds more confidence
cthac che software is, indeed, correctly used. In such a concext,
the use of verification tachnology is practical and economically
feasible.

An annotation system used in cthis manner is an example of the use
of a formal method. The motivating property of a formal method
that is implicic in this approach is che production of formal
descripcions that can be ~ead and intarpreced by sofcware tools.
High ordeable specifications. Thus

anocher benefic of this approach is thac ic leads to the
formation of an execucable specification langauge.

2. Applicaction of the Concept

A partial verification approach based upon Ada as the
implemencation language can be developed from exiscing ctools.
Such tools include an Ada compiler, Anna as the annocacion
language, and the tool set developed for Anna.

The concepC can be applied to a library of appropriacely

ammocactad Ada code modules, so thac, when a particularaappropriate conctexc. The
appropriata annoctatioms are

assercions. When the Anna tools are employed in the compilacion

procass, thesa assertions gemerata code to raise an Anna

exception, at run time, if an actempt is made to use the module

in an incorract context.

Bv concentrating on annocations that are contained within che

library modules, che problem that program developers find

annotacions difficulc to develop is alleviated. A counsequence of

cthis approach is that the use of annotations does not buonstraints on cthe Ada
model chat inhibic or enhance portabilicy.

In this raspect, we can investigate how to idencify design

choices, by Ada compiler implementors, that affectc the

porzabilicy of code.

Similarly, we can annocate design choices by hardware designers
thac aZfact che portabilicy of Ada code, and thereby aveid
incorzecz use of Ada software modules dependent on a missing
hardware design feacure.

The cbjective of this use of annocacion is to capcure information
and thus be able co derive counfidne
architecture.

3. Examples

The use of annotation adds integrity and security to software
thac contains the following types of modulas:

a. An ~lementary function, such as the Sine
function, where a fast version devoid of
range reduction could be annotated and used
in certain conctexts.

A subprogram that is applicable only to a
numeric subctype that, given the language Cype
model, is not expressible excepc by
annocation. For as byta order. A
desired abstraction, most significanc byte,
can be ammoctacad, while the programming
language permics only the abhstraction, low-
numberad or high-numbered byta. The
corraspondence becween che desired
absctraction and the abstraction permittad by
the programming language is machine
dependenc.

d. An operacing system dependency, such as a
naming couvention that impacts che source
code.

APPENDIX B

ANALYSIS OF CATALOG OF INTERFACE FEATURES AND OPTIONS (CIFO)
(Not Part of the Workshop Outputs)

The analysis summarized in this appendix resulted from an evening meeting that was not
part of the workshop. This appendix was made available for informational purposes to
the workshop participants. To obtain a copy of Appendix B, contact:

Fred Maymir-Ducharme, Ph.D.
Chair, ARTEWG Security Task Force
IIT Research Institute

4600 Forbes Boulevard

Lanham, MD 20706

Telephone: (301) 731-8894

B-1

APPENDIX C
PARTICIPANTS

C-1

Dock Allen

Control Data Corporation
HQ6539

P.O. Box 609
Bloomington, MN 55440

James P. Alstad

Hughes Aircraft Company
Support Software Department
P.O. Box 92428

Bidg. R11, MS 10046

Los Angeles, CA 90009

Mary S. Armstrong

IIT Research Institute
4600 Forbes Bivd.
Lanham, Maryland 20706

Edward Beaver
Westinghouse ESG

P.O. Box 746

M.S. 5370

Baltimore, Maryland 21203

George Buchanan

IIT Research Institute
4600 Forbes Bivd.
Lanham, Maryland 20706

Paul M. Cohen

Martin Marietta Information
& Communications Systems
P.O. Box 1260 MS XL1640
Denver, CO 80201-1260

Michael Diaz

Motorola GEG

MS H 1101

8201 East McDowell Road
Scottsdale, Arizona 85252

C-2

o

Douglas Ferguson
Westinghouse ESG

P.O. Box 746

M.S. 5370

Baltimore, Maryland 21203

Clareance "Jay" Ferguson

National Security Agency

9800 Savage Road :

Fort George G. Meade, Maryland 20755-6000

Edward Gallagher

US Army CECOM
AMSEL-RD-SE-AST-SS
Fort Monmouth, NJ 07703

Steve Goldstein

IT Research Institute
4600 Forbes Bivd.
Lanham, Maryland 20706

Jeffrey L. Grover

Manager, LHX-PMO (GTRI)
ERB/Rm 173

Georgia Tech Research Institute
Atlanta, Georgia 30332

Mark Kraieski
MCAir/LHX

5000 E McDowell
Mesa, AZ

Sue LeGrand

Planning Research Corp.
Suite 200

2200 Space Park Drive
Houston, Texas 77058

C-3

Nina Lewis

Unisys Corporation
Defense Systems
5151 Camino Ruiz
Camanilio, CA 93010

Ann Marmor-Squires
TRW

Federal Systems Group
2750 Prosperity Avenue
Fairfax, Virginia 22031

Fred Maymir-Ducharme, Ph.D.
IIT Research Institute

4600 Forbes Bivd.

Lanham, Maryland 20706

John McHugh, Ph.D.
Computational Logic, Inc.)
3500 Westgate Drive, Suite 204
Durham, North Carolina 27707

John A. Perkins

Dynamics Research Corporation
60 Frontage Road

Andover, Ma 01810

Charles W. McKay, Ph.D.

Software Engineering Research Center
High Technologies Lab

2700 Bay Area Bivd.

Houston, TX 77058-1068

Captain Robert Pierce
AFCSC/SRVC

Bidg. 2012
San Antonio, Texas

C4

4

Richard Powers

Texas Instruments Defense Systems
and Electronics Group

P.O. Box 869305

M/S 8503

Plano, Texas 75086

Ken Rowe

National Computer Security Center

9800 Savage Road

Ft. George Meade, Maryland 20755-6000

Jonathan C. Shuitis, Ph.D.
Incremental Systems Corporation
319 South Craig Street
Pittsburgh, PA 15213

William R. Worger
Motorola, GEG

8201 E. McDowell Road
P.O. Box 1417
Scottsdale, AZ 85252

C-5

